
Supplementary Material

Description of the cluster algorithm CA

The cluster analysis program CA clusters points into four clusters and assigns a score to each

point based on statistical probabilities. The program, which is written in Perl, uses as input a text file

containing the raw data for points to be clustered. The program displays the clusters in a plot on the

screen, optionally sends it to a printer, and scores every point. An output file is generated which for

each point contains the cluster to which the point belongs, a score of the point for that cluster, and

probabilities of that point for each of the four clusters.

The program has two very different parts: First, a heuristic algorithm is applied to initially

define the clusters, the output of which is used in the second part to score points based on statistics.

This second part of the program actually is an iterative process consisting of three identical iterations.

In each iteration, the distribution parameters are calculated, points are assigned probabilities for all

clusters, and based on these probabilities, new clusters are formed. These are then used in the next

iteration. After the iterations, a score is assigned to each point, based on the calculated probabilities.

The heuristic algorithm starts by determining four extreme data points: a left-lower one, a left-

upper one, a right-lower one and a right-upper one. If this fails, the algorithm reports an error that

there are fewer than four clusters. To determine the extreme points, we use a recursive algorithm.

First, the point of gravity of all data points is determined. This point of gravity serves as the origin of a

coordinate system. In each quadrant of that coordinate system there should now be at least one data

point. When this is not the case the program defaults to a predetermined value to represent the middle

of the four clusters. To determine the extreme data point in one of the quadrants, all data points are

combined and the point of gravity for these points is recalculated. Again, this point is used to divide

the initial quadrant into four sub-quadrants. This is repeated recursively until there is only one point

left or until there is no longer a point left. In the former case, this remaining point is the extreme and in

the latter case, the center of gravity of the points in the previous step represents an artificially

constructed extreme.

Next, we use these extremes as starting points to determine the center of each cluster.

Statistics dictate that the center of a cluster is an area of high density of points, and further away from

the center the density decreases. This property is used to determine the center of each cluster. A circle

is drawn around an extreme and then for all points in the circle the center of gravity is determined

which serves as the center of a new circle. This process is repeated until the circle no longer moves or

until we took unrealistically many steps (e.g. 10,000). The latter ends the algorithm because of

instabilities. Otherwise, the circles migrate to the areas of high density of points. When this is applied

to the four extremes, four different centers should result. If this is not the case, the program ends and

states that there are less than four clusters. Note that the radius of the circle, which migrates to the high

density area, is a degree of freedom, which required empirical adjustment when the program was run

initially. If the radius is too small, the circle may remain at the extreme, and if the radius is too large,

all circles may migrate to the same center even though there are four clusters.

The three centers of the upper-left, upper-right and lower-right are then used to determine the

mid-points for neighboring clusters. Drawing two lines from the origin to the two mid-points defines

three sectors. A fourth area is defined for the lower-left cluster by drawing an ellipse with origin (0, 0)

and going through two specific points. These two points are defined by adding a constant value, which

is heuristically determined, once to the x-coordinate and once to the y-coordinate of the point of gravity

of the no-target control samples used in the assay to measure background fluorescence. The final

results of this approach are four sectors as shown in Figure 2. The sector in which a data point is

situated now determines the initial assignment of the points to clusters. Note that all this is automated,

so no user interaction is required. However, at this time, a graph showing all points and the sectors is

shown to the user as a visual control so that the user can easily discriminate a bad initialization in case

this ever occurs.

Based on this initial clustering, for every cluster, the point of gravity (mx, my) is determined,

as are the standard deviations �xx, �xy, �yy. These parameters together unambiguously define a two

dimensional normal distribution. A plot of all points of this distribution with a constant probability

would be an ellipse in the graph with origin (mx, my). This ellipse actually shows the standard

deviation in each direction. It is worth mentioning that the program does not actually use �xx, �xy, �yy,

rather, it determines the axes of the ellipse by recalculating �X’X’, �X’Y’, �Y’Y’ in a rotated coordinate

system X’, Y’ with its origin in the point of gravity until �X’Y’=0. To find zero we iteratively change

the rotation angle through a simple bisection algorithm. All points are then converted to this new

coordinate system before putting them in the normal distribution. A point (X, Y) gets the new

coordinates (X’,Y’) after rotation over an angle �:

X’ = X cos(�) + Y sin(�)

Y’ = -X sin(�) + Y cos(�)

Through this method, the two-dimensional normal distribution can be considered a simple product of

two one-dimensional normal distributions, one with parameters (m, �) = (0, �X’X’) and the other with

parameters (m, �) = (0, �Y’Y’). So in the new coordinate system, the two-dimensional normal

distribution can be written as:

p(X’,Y’) = 1/(�X’X’ sqrt(2�)) exp(-X’2 / (2�X’X’
2)) 1/(�Y’Y’ sqrt(2�)) exp(-Y’2 / (2�Y’Y’

2))

The two-dimensional normal distributions can be visualized as four mountains rising in the third

dimension out of the figure, with their peaks above the points of gravity. Every mountain has a tail (or

fairly flat plateau around it), which stretches to infinity. If we take a cross-section at a certain height

(=certain probability), we get an ellipse, the size of which is proportional to the standard deviation.

With this visualization in mind, every point can be assigned probabilities p1, p2, p3, p4 by the four

distributions, ignoring the initial sector definitions, which are n longer needed.

Once the four probabilities for a point are known, the maximum probability among the four is

determined and defines the cluster to which the point will be assigned. After assigning all points to

their cluster, we repeat the process of determining the centers of gravity and the standard deviations

with the new cluster assignment. Based on the new parameters, the new probabilities for each point are

calculated and a new cluster assignment is done. This process is again repeated a third time.

Iterating through this process eliminates possible errors in the initial crude cluster (sector)

assignment. The idea behind this iterative process of refined cluster assignment is that the areas of

high density will take the upper hand in determining the distribution parameters so some points that are

assigned wrongly on initialization should not disturb the distribution significantly and will migrate to

the right cluster.

As a last step in the algorithm, the points are scored. The two highest probabilities are

determined and used to calculate the normalized score for every point:

score = max(p1, p2, p3, p4) / (max(p1, p2, p3, p4) + 2ndmax(p1, p2, p3, p4))

For example, in the case of a point having equal highest probabilities for two clusters the score is 50%,

which is the lowest attainable score. We added one modification to this scoring function: if a point

belongs to the extreme tail of all clusters, it is assigned a score of zero.

Scores, probabilities and final cluster assignment are all written to a text file scores.dat, which can

be manipulated by other programs for further processing, or put in a database, or imported in Excel.

Because the probabilities are included in this text file, one can easily modify the scoring criteria of the

algorithm in a preprocessing step, or when database queries are made. Given this the reader can easily

understand the importance of storing these probabilities along in a database, even when one would only

be interested in the actual cluster assignment. For the graphics part, the Perl program invokes the

freely available program Gnuplot (http://www.gnuplot.org) that plots the points and shows the cluster

assignment with colors/symbols from initialization, through the consecutive refinement steps to the end

result. For the interested reader we mention that the Perl program prints out a commands file and a

data file, both of which are then used by the plotting program Gnuplot.

	Supplementary Material
	Description of the cluster algorithm CA

